LangChain Integration
Overview
LangChain is a comprehensive framework for developing applications powered by language models through composable components. It provides the building blocks for creating complex LLM applications through a modular architecture.
Key Features
- Chains: Combine multiple components for complex workflows
- Agents: Build autonomous systems that can use tools and make decisions
- Memory: Implement stateful conversations and context management
- Retrievers: Connect to external data sources for knowledge retrieval
- Tools and Integrations: Extensive library of integrations with third-party services
Use Cases
- Building sophisticated chatbots with multi-step reasoning
- Creating document analysis systems with complex data processing
- Developing agents that can perform tasks and use external tools
- Building data analytics applications with natural language interfaces
Setup Instructions
1. Install LangChain:
pip install langchain langchain-openai
2. Configure the OpenAI chat model with custom base URL
from langchain_openai import OpenAIfrom langchain.schema import HumanMessage
# Initialize with relaxAI parametersllm = OpenAI( model_name="Llama-4-Maverick-17B-128E", openai_api_key="RELAX_API_KEY", openai_api_base="https://api.relax.ai/v1/", max_tokens=200)
# Example usagemessages = [HumanMessage(content="Write a poem about quantum computers.")]response = llm.invoke(messages)print(response)
Advanced Example: Retrieval-Augmented Generation (RAG)
Code Example
from langchain_openai import OpenAIfrom langchain_community.document_loaders import TextLoaderfrom langchain_text_splitters import CharacterTextSplitterfrom langchain_community.vectorstores import Chromafrom langchain_openai import OpenAIEmbeddingsfrom langchain.chains import RetrievalQA
# Load and process documentsloader = TextLoader("./data/my_document.txt")documents = loader.load()text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)texts = text_splitter.split_documents(documents)
# Create vector storeembeddings = OpenAIEmbeddings( openai_api_key="RELAX_API_KEY", openai_api_base="https://api.relax.ai/v1/")vectorstore = Chroma.from_documents(texts, embeddings)
# Create LLMllm = OpenAI( model_name="DeepSeek-R1", #Custom model name openai_api_key="RELAX_API_KEY", openai_api_base="https://api.relax.ai/v1/", max_tokens=400)
# Create RAG chainqa_chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=vectorstore.as_retriever())
# Query the systemquery = "What are the key points in this document?"response = qa_chain.run(query)print(response)
Resources
- LangChain Documentation
- LangChain GitHub Repository
- Custom LLM Integration Guide
- RAG Applications Guide